If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(u^2)+3u-10=0
a = 1; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·1·(-10)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*1}=\frac{-10}{2} =-5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*1}=\frac{4}{2} =2 $
| -20=-(n+3) | | 2n+25+5n+36=180 | | 36-12y-3y=24 | | (u^2)+u-30=0 | | 54-x=x | | 7b-(2B+4)=5b-10 | | 17=g–12 | | x-54=x | | 4(5^5p)-3=-31 | | 4t+3.5=12 | | 3x-2x+4=+x+2 | | |2x+7|=21 | | 1/2(3x+10)=1/2(-3x+30) | | .4(8-y)=2y+16 | | (-5/6e)-(2/3e)=-24 | | 6=2/7(2x+28 | | 25x-10=27-10 | | 4(2x-7)+6=5x+8 | | 9-x+1=-17 | | 26=m–20 | | 6+-3z=15 | | (2x+1)=(3x-11) | | 4/n=5/9 | | 5x+7-8x=2x-8 | | 7(3x-1)+30=11x-27 | | 7x+7x+5x+5x=360 | | -6y+18=-2(y-5) | | 4(2-7)+6=5x+8 | | 5(y+1)=-7y+41 | | 90=3(1+6n)-3 | | x+x-26+90+90=360 | | 4=y+36 |